Impact of gabapentin on neuronal high voltage-activated Ca2+ channel properties of injured-side axotomized and adjacent uninjured dorsal root ganglions in a rat model of spinal nerve ligation
نویسندگان
چکیده
The density and properties of ion channels in the injured axon and dorsal root ganglion (DRG) neuronal soma membrane change following nerve injury, which may result in the development of neuropathic pain. Gabapentin (GBP) is a drug for the first-line treatment of neuropathic pain. One of its therapeutic targets is the voltage-activated calcium channel (VACC). In the present study, the whole-cell patch clamp technique was used to examine the changes of high voltage-activated Ca2+ (HVA-Ca2+) channels in DRG neurons from sham and neuropathic rats in the absence and presence of GBP. The results demonstrated a reduction in peak current density and the 'window current' between activation and inactivation in adjacent and axotomized neurons from rats that had undergone L5 spinal nerve ligation, thus attenuating the total inward Ca2+ current. Following the use of the specific channel blockers nifedipine, ω-conotoxin MVIIC and ω-conotoxin MVIIA, increased HVA-Ca2+ channels as well as an increased proportion of N-type Ca2+ currents were observed in axotomized neurons. GBP inhibited HVA calcium channel currents in a dose-dependent manner. The activation and steady-state inactivation curves for HVA channels were shifted in a hyperpolarizing direction by 100 µmol/l GBP. Following the application of GBP, a reduction in the 'window current' was observed in control and axotomized neurons, whereas the 'window current' was unchanged in adjacent neurons. This indicates that the inhibitory effects of GBP may be dependent on particular neuropathological or inflammatory conditions. The proportion of N-type Ca2+ currents and sensitivity to GBP were increased in axotomized neurons, which indicated the involvement of N-type Ca2+ currents in the inhibitory effect of GBP.
منابع مشابه
The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملUpregulation of Dorsal Root Ganglion a2d Calcium Channel Subunit and Its Correlation with Allodynia in Spinal Nerve-Injured Rats
Peripheral nerve injury can lead to a persistent neuropathic pain state in which innocuous tactile stimulation elicits pain behavior (tactile allodynia). Spinal administration of the anticonvulsant gabapentin suppresses allodynia by an unknown mechanism. In vitro studies indicate that gabapentin binds to the a2d-1 (hereafter referred to as a2d) subunit of voltage-gated calcium channels. We hypo...
متن کاملIncreased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation.
Tumor necrosis factor-alpha (TNF) is upregulated after nerve injury, causes pain on injection, and its blockade reduces pain behavior resulting from nerve injury; thus it is strongly implicated in neuropathic pain. We investigated responses of intact and nerve-injured dorsal root ganglia (DRG) neurons to locally applied TNF using parallel in vivo and in vitro paradigms. In vivo, TNF (0.1-10 pg/...
متن کاملEarly onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers.
Ligation and transection of the L5 spinal nerve in the rat lead to behavioral signs of pain and hyperalgesia. Discharge of injured nociceptors has been presumed to play a role in generating the pain. However, A fibers, but not C fibers, in the injured L5 spinal nerve have been shown to develop spontaneous activity. Moreover, an L5 dorsal root rhizotomy does not reverse this pain behavior, sugge...
متن کاملاثر محافظت عصبی اسید اوریک در پیشگیری از آپوپتوز نورونهای گانگلیون ریشه پشتی اعصاب نخاعی
Background and Objective: The neuroprotective effect of uric acid as a natural antioxidant on neurodegenerative diseases has been proposed repeatedly, but its antiapoptotic effect on spinal neurons has not been examined yet. Due to the critical role of sensory neurons in the improvement of functional outcome in neuroprotective strategies, the antiapoptotic effect of uric acid on dorsal root gan...
متن کامل